- частично-упорядоченные множества
- Programming: partly-ordered sets
Универсальный русско-английский словарь. Академик.ру. 2011.
Универсальный русско-английский словарь. Академик.ру. 2011.
Упорядоченные и частично упорядоченные множества — (математичексие) множества, в которых каким либо способом установлен порядок следования их элементов или, соответственно, частичный порядок. Понятия порядка и частичного порядка следования элементов определяются следующим образом. Говорят … Большая советская энциклопедия
Упорядоченные и частично упорядоченные множества — В математике частично упорядоченным множеством называется множество, на котором определено отношение частичного порядка. Неформально можно сказать, что это отношение вводит некую иерархию элементов множества, выстраивает зависимости между ними,… … Википедия
Частично упорядоченное множество — У этого термина существуют и другие значения, см. Упорядоченное множество. Подмножества {x, y, z}, упо … Википедия
Частично упорядоченное множество — (матем.) см. Упорядоченные и частично упорядоченные множества … Большая советская энциклопедия
ЧАСТИЧНО УПОРЯДОЧЕННАЯ ГРУППА — группа G, на к рой задано отношение частичного порядка такое, что для любых а, b, х, у из G неравенство влечет за собой Множество Ч. у. г., называемое положительным конусом, или целой частью, группы G, обладает свойствами: 1) 2) 3) для любых… … Математическая энциклопедия
Трансфинитные числа — (от Транс… и лат. finitus ограниченный) обобщённые порядковые числа. Определение Т. ч. опирается на понятие вполне упорядоченного множества (см. Упорядоченные и частично упорядоченные множества). Каждое конечное множество можно сделать… … Большая советская энциклопедия
Непрерывность по Скотту — в математике свойство функций над частично упорядоченными множествами, выражающееся в сохранении точной верхней грани относительно отношения частичного порядка. Топология Скотта структура над полной решёткой или, в более общем случае, над полным… … Википедия
Теорема Шпильрайна — Теорема Шпильрайна одна из центральных теорем теории упорядоченных множеств, впервые сформулированная и доказанная польским математиком Эдвардом Шпильрайном в 1930 году. Содержание 1 Формулировка 2 Доказательство … Википедия
ПОРЯДКА ОТНОШЕНИЕ — бинарное (двуместное, двучленное) отношение, обладающее свойствами иррефлек сивности (см. Рефлексивность) и транзитивности (из чего следует также его антисимметричность, см. Симметричность). П. о. упорядочивает элементы множества, на к ром оно… … Философская энциклопедия
Теорема Кнастера — Тарского — теорема в теории множеств, впервые сформулированная в частном случае Брониславом Кнастером, и обобщённая Альфредом Тарским. Формулировка Частично упорядоченное множество называется полным, если оно содержит наименьший элемент, и каждая цепь в нём … Википедия
Теорема Кнастера — Бронислав Кнастер … Википедия